AQA Combined Science & Physics.

	n	it	Г	•	L	'n	~	3	9
U		IL.	5					-	Э

Тур	Types of forces				
1	Force	a push or pull that acts on an object due to the			
		interaction with another object			
2	Scalar quantity	a quantity that has magnitude only			
3	Scalar examples	distance, mass, time, energy, speed			
4	Vector quantity	a quantity that has magnitude and direction			
5	Vector examples	weight, force, acceleration, displacement			
6	Contact force	force between objects that physically touch			
7	Contact force	air resistance, thrust, tension, compression			
	examples				
8	Non-contact force	force between objects that are physically			
		separated			
9	Non-contact force	electrostatic, gravitational, magnetic			
	examples				
10	Resultant force	a number of forces acting on an object may be			
		replaced by a single force that has the same			
		effect as all the original forces acting together			
11	Free Body diagram	a diagram that models the forces acting on an			
		object			

Wo	Work Done & Energy Transfer					
17	Work done	energy transferred				
18	Joule	one joule of work is done when one newton of force				
		causes a displacement of one metre				
19	Work done	work done = force x distance				
	equation					

Uni	ts			
20	Energy	е	Joules	J
21	mass	m	kilograms	kg
22	Gravitational field strength	g	Newtons/kilogram	N/kg
23	Weight	W	Newtons	Ν
24	height	h	metres	m
25	Spring constant	k	Newtons/metre	N/m
26	extension	е	metres	m
27	Speed	v	metres per second	m/s
28	velocity	v	metres per second	m/s
29	displacement	S	metres	m
30	Work done	W	Joules	J
31	Force	F	Newton	Ν
32	distance	S	metres	m
33	power	Р	watts	W
34	time	t	seconds	S
35	acceleration	а	metres/second	m/s ²
			squared	
36	momentum	р	kilograms metre per	kg m/s
			second	

Gra	vity & Weight	
12	Weight	force acting on an object due to gravity
13	Gravity	a force that attracts another body towards the centre or the earth, or another body i.e. sun
14	Gravitational field strength	9.8 N/kg (on earth)
15	Weight equation	Weight = mass x gravitational field strength
16	Newton meter	calibrated spring balance used to measure force

AQA Combined Science & Physics.

	Ini		5	: F	0	rc		c
U		IL.	5		U	ιu	С.	э

Exte	stension of a spring						
37	Spring constant	the extension of a given spring dependent on the mass					
		(force)	(force) applied to the spring				
38	Spring equation	force =	force = spring constant x extension (F = k x e)				
39	Compression a force applied to make an object decrease in length						
40	Elastic	stic temporary change in shape of an object as a reaction to					
	deformation	an applied force					
41	Inelastic	permanent change of shape when object is stretched					
	deformation	beyond its elastic limit					
42	Required Practica	l: Force	& Extension of a spring				
Α	Independent Varia	able:	force applied to the spring				
В	Dependent Variable:		extension of the spring				
С	Control Variable:		material of spring, angle of ruler				
D	Method:						
	 suspend 	mass fr	om a spring and measure extension				

- add additional known mass and re-measure
- use k = f/ e to find the spring constant of that spring

Desc	Describing Motion				
43	Distance	how far an object moves			
44	Displacement	distance travelled in a specified direction			
45	Speed	distance travelled in a given time			
46	Speed equation	speed = distance / time			
47	Speed of sound	330 m/s			
48	Speed of walking	1.5 m/s			
49	Speed of running	3 m/s			
50	Speed of cycling	6 m/s			
51	Velocity	speed in a specific direction			
52	Acceleration	increasing in velocity			
53	Deceleration	decreasing in velocity			
54	Acceleration	acceleration = <u>change in velocity</u>	α = <u>v – u</u>		
	equation	Time taken	t		
55	Terminal Velocity	the constant speed that a freely fa	Illing object		
		eventually reaches where resultan	it force is zero		

Nev	vtons laws	
56	Newton's	if the resultant force on an object is zero, there will be no
	1 st Law	change in direction or speed of the object
57	Newton's	acceleration is proportional to increased resultant force
	2 nd Law	and inversely proportional to increase in mass
58	X	proportional
59	2 nd Law	force = mass x acceleration F = ma
	equation	
60	inertia	tendency of object to continue in state of rest or motion
61	Newton's	the forces exerted by two objects interacting are equal
	3 rd Law	and opposite.

Sto	Stopping Distances					
62	Stopping Distance	thinking distance + braking distance				
63	Thinking distance	distance travelled during the drivers reaction time				
64	Braking distance	distance travelled once a force is applied to the				
		brakes				
65	Factors affecting	tiredness, drugs, alcohol, distractions				
	reaction time					
66	Factors affecting	condition of tyres, condition of brakes, condition				
	braking distance	of road (eg icy or wet), speed, mass of vehicle.				

Mc	Momentum					
67	Momentum equation	momentum = mass x velocity				
68	Conservation of momentum	momentum before a collision = momentum after a collision				