| Types of forces |  |  |
| :--- | :--- | :--- |
| 1 | Force | a push or pull that acts on an object due to the <br> interaction with another object |
| 2 | Scalar quantity | a quantity that has magnitude only |
| 3 | Scalar examples | distance, mass, time, energy, speed |
| 4 | Vector quantity | a quantity that has magnitude and direction |
| 5 | Vector examples | weight, force, acceleration, displacement |
| 6 | Contact force | force between objects that physically touch |
| 7 | Contact force <br> examples | air resistance, thrust, tension, compression |
| 8 | Non-contact force | force between objects that are physically <br> separated |
| 9 | Non-contact force <br> examples | electrostatic, gravitational, magnetic <br> 10 |
| Resultant force | a number of forces acting on an object may be <br> replaced by a single force that has the same <br> effect as all the original forces acting together |  |
| 11 | Free Body diagram | a diagram that models the forces acting on an <br> object |


| Gravity \& Weight |  |  |
| :--- | :--- | :--- |
| 12 | Weight | force acting on an object due to gravity |
| 13 | Gravity | a force that attracts another body towards the centre <br> or the earth, or another body i.e. sun |
| 14 | Gravitational <br> field strength | $9.8 \mathrm{~N} / \mathrm{kg}$ (on earth) |
| 15 | Weight <br> equation | Weight = mass x gravitational field strength |
| 16 | Newton meter | calibrated spring balance used to measure force |


| Units |  |  |  | e |
| :---: | :--- | :---: | :--- | :---: |
| 20 | Joules | J |  |  |
| 21 | mass | m | kilograms | kg |
| 22 | Gravitational field strength | g | Newtons/kilogram | $\mathrm{N} / \mathrm{kg}$ |
| 23 | Weight | W | Newtons | N |
| 24 | height | h | metres | m |
| 25 | Spring constant | k | Newtons/metre | $\mathrm{N} / \mathrm{m}$ |
| 26 | extension | e | metres | m |
| 27 | Speed | v | metres per second | $\mathrm{m} / \mathrm{s}$ |
| 28 | velocity | v | metres per second | $\mathrm{m} / \mathrm{s}$ |
| 29 | displacement | s | metres | m |
| 30 | Work done | W | Joules | J |
| 31 | Force | F | Newton | N |
| 32 | distance | s | metres | m |
| 33 | power | P | watts | W |
| 34 | time | t | seconds | s |
| 35 | acceleration | a | metres/second <br> squared | $\mathrm{m} / \mathrm{s}^{2}$ |
| 36 | momentum | $p$ | kilograms metre <br> second | $\mathrm{kg} \mathrm{m} / \mathrm{s}$ |

Extension of a spring

| 37 | Spring constant | the extension of a given spring dependent on the mass <br> (force) applied to the spring |
| ---: | :--- | :--- |
| 38 | Spring equation | force = spring constant $x$ extension (F = k x e) |
| 39 | Compression | a force applied to make an object decrease in length |
| 40 | Elastic <br> deformation | temporary change in shape of an object as a reaction to <br> an applied force |
| 41 | Inelastic <br> deformation | permanent change of shape when object is stretched <br> beyond its elastic limit |
| 42 | Required Practical: Force \& Extension of a spring |  |
| A | Independent Variable: | force applied to the spring |
| B | Dependent Variable: | extension of the spring |
| C | Control Variable: | material of spring, angle of ruler |
| D | Method: |  |

- suspend mass from a spring and measure extension
- add additional known mass and re-measure
- use $k=f /$ e to find the spring constant of that spring

| Describing Motion |  |  |  |
| :---: | :---: | :---: | :---: |
| 43 | Distance | how far an object moves |  |
| 44 | Displacement | distance travelled in a specified direction |  |
| 45 | Speed | distance travelled in a given time |  |
| 46 | Speed equation | speed = distance / time |  |
| 47 | Speed of sound | $330 \mathrm{~m} / \mathrm{s}$ |  |
| 48 | Speed of walking | $1.5 \mathrm{~m} / \mathrm{s}$ |  |
| 49 | Speed of running | $3 \mathrm{~m} / \mathrm{s}$ |  |
| 50 | Speed of cycling | $6 \mathrm{~m} / \mathrm{s}$ |  |
| 51 | Velocity | speed in a specific direction |  |
| 52 | Acceleration | increasing in velocity |  |
| 53 | Deceleration | decreasing in velocity |  |
| 54 | Acceleration equation | $\text { acceleration }=\frac{\text { change in velocity }}{\text { Time taken }}$ | $\alpha=\frac{v-u}{t}$ |
| 55 | Terminal Velocity | the constant speed that a freely falling object eventually reaches where resultant force is zero |  |


| Newtons laws |  |  |
| :---: | :---: | :---: |
| 56 | Newton's $1^{\text {st }} \text { Law }$ | if the resultant force on an object is zero, there will be no change in direction or speed of the object |
| 57 | Newton's $2^{\text {nd }}$ Law | acceleration is proportional to increased resultant force and inversely proportional to increase in mass |
| 58 | O | proportional |
| 59 | $2^{\text {nd }} \text { Law }$ <br> equation | force $=$ mass $\times$ acceleration $F=m a$ |
| 60 | inertia | tendency of object to continue in state of rest or motion |
| 61 | Newton's $3^{\text {rd }}$ Law | the forces exerted by two objects interacting are equal and opposite. |


| Stopping Distances |  |  |
| :--- | :--- | :--- |
| 62 | Stopping Distance | thinking distance + braking distance |
| 63 | Thinking distance | distance travelled during the drivers reaction time |
| 64 | Braking distance | distance travelled once a force is applied to the <br> brakes |
| 65 | Factors affecting <br> reaction time | tiredness, drugs, alcohol, distractions |
| 66 | Factors affecting <br> braking distance | condition of tyres, condition of brakes, condition <br> of road (eg icy or wet), speed, mass of vehicle. |


| Momentum |  |  |
| :--- | :--- | :--- |
| 67 | Momentum <br> equation | momentum = mass $x$ velocity |
| 68 | Conservation of <br> momentum | momentum before a collision = momentum after <br> a collision |

